Part Number Hot Search : 
1N3700B AE10737 MAX1102 IRFP44 BU4912G RN2317 MAX15 MCT210VM
Product Description
Full Text Search
 

To Download ISL9N306AD3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ?2002 fairchild semiconductor corporation august 2002 ISL9N306AD3 / ISL9N306AD3st ISL9N306AD3 / ISL9N306AD3st rev. b1 source ISL9N306AD3 / ISL9N306AD3st n-channel logic level pwm optimized ultrafet ? trench power mosfets 30v, 50a, 6m ? general description this device employs a new advanced trench mosfet technology and features low gate charge while maintaining low on-resistance. optimized for switching applications, this device improves the overall efficiency of dc/dc converters and allows operation to higher switching frequencies. applications ? dc/dc converters features  fast switching r ds(on) = 0.0052 ? (typ), v gs = 10v r ds(on) = 0.0085 ? (typ), v gs = 4.5v q g (typ) = 30nc, v gs = 5v q gd (typ) = 11nc c iss (typ) = 3400pf mosfet maximum ratings t a = 25c unless otherwise noted thermal characteristics package marking and ordering information symbol parameter ratings units v dss drain to source voltage 30 v v gs gate to source voltage 20 v i d drain current 50 a continuous (t c = 25 o c, v gs = 10v) continuous (t c = 100 o c, v gs = 4.5v) 50 a continuous (t c = 25 o c, v gs = v, r jc = 52 o c/w) 16 a pulsed figure 4 a p d power dissipation derate above 25 o c 125 0.83 w w/ o c t j , t stg operating and storage temperature -55 to 175 o c r jc thermal resistance junction to case to-251, to-252 1.2 o c/w r ja thermal resistance junction to ambient to-251, to-252 100 o c/w r ja thermal resistance junction to ambient to-252, 1in 2 copper pad area 52 o c/w device marking device package reel size tape width quantity n306ad ISL9N306AD3st to-252aa 330mm 16mm 2500 units n306ad ISL9N306AD3 to-251aa tube n/a 75 units gate drain (flange) d g s to-252 (flange) drain gate drain source to-251
?2002 fairchild semiconductor corporation ISL9N306AD3 / ISL9N306AD3st rev. b1 ISL9N306AD3 / ISL9N306AD3st electrical characteristics t a = 25 c unless otherwise noted off characteristics on characteristics dynamic characteristics switching characteristics (v gs = 4.5v) switching characteristics (v gs = 10v) unclamped inductive switching drain-source diode characteristics symbol parameter test conditions min typ max units b vdss drain to source breakdown voltage i d = 250 a, v gs = 0v 30 - - v i dss zero gate voltage drain current v ds = 25v - - 1 a v gs = 0v t c = 150 o - - 250 i gss gate to source leakage current v gs = 20v - - 100 na v gs(th) gate to source threshold voltage v gs = v ds , i d = 250 a1-3v r ds(on) drain to source on resistance i d = 50a, v gs = 10v - 0.0052 0.0060 ? i d = 50a, v gs = 4.5v - 0.0085 0.0095 c iss input capacitance v ds = 15v, v gs = 0v, f = 1mhz -3400- pf c oss output capacitance - 650 - pf c rss reverse transfer capacitance - 300 - pf q g(tot) total gate charge at 10v v gs = 0v to 10v v dd = 15v i d = 50a i g = 1.0ma -6090nc q g(5) total gate charge at 5v v gs = 0v to 5v - 30 45 nc q g(th) threshold gate charge v gs = 0v to 1v - 3.0 4.5 nc q gs gate to source gate charge - 10 - nc q gd gate to drain ? miller ? charge - 11 - nc t on tu r n - o n t i m e v dd = 15v, i d = 16a v gs = 4.5v, r gs = 4.3 ? - - 131 ns t d(on) turn-on delay time - 16 - ns t r rise time - 70 - ns t d(off) turn-off delay time - 34 - ns t f fall time - 30 - ns t off turn-off time - - 97 ns t on tu r n - o n t i m e v dd = 15v, i d = 16a v gs = 10v, r gs = 4.3 ? - - 80 ns t d(on) turn-on delay time - 10 - ns t r rise time - 43 - ns t d(off) turn-off delay time - 62 - ns t f fall time - 29 - ns t off turn-off time - - 137 ns t av avalanche time i d = 3.6a, l = 3mh 240 - - s v sd source to drain diode voltage i sd = 50a - - 1.25 v i sd = 25a - - 1.0 v t rr reverse recovery time i sd = 50a, di sd /dt = 100a/ s- - 35 ns q rr reverse recovered charge i sd = 50a, di sd /dt = 100a/ s- - 30 nc
?2002 fairchild semiconductor corporation ISL9N306AD3 / ISL9N306AD3st rev. b1 ISL9N306AD3 / ISL9N306AD3st typical characteristic figure 1. normalized power dissipation vs ambient temperature figure 2. maximum continuous drain current vs case temperature figure 3. normalized maximum transient thermal impedance figure 4. peak current capability t c , case temperature ( o c) power dissipation multiplier 0 0 25 50 75 100 175 0.2 0.4 0.6 0.8 1.0 1.2 125 150 0 10 20 30 40 50 60 25 50 75 100 125 150 175 i d , drain current (a) t c , case temperature ( o c) v gs = 10v v gs = 4.5v 0.1 1 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 0.01 2 t, rectangular pulse duration (s) z jc , normalized thermal impedance notes: duty factor: d = t 1 /t 2 peak t j = p dm x z jc x r jc + t c p dm t 1 t 2 0.5 0.2 0.1 0.05 0.01 0.02 duty cycle - descending order single pulse 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 i dm , peak current (a) t, pulse width (s) t c = 25 o c i = i 25 175 ? t c 150 for temperatures above 25 o c derate peak current as follows: v gs = 5v transconductance may limit current in this region v gs = 10v 100 1000 40 2000
?2002 fairchild semiconductor corporation ISL9N306AD3 / ISL9N306AD3st rev. b1 ISL9N306AD3 / ISL9N306AD3st figure 5. transfer characteristics figure 6. saturation characteristics figure 7. drain to source on resistance vs gate voltage and drain current figure 8. normalized drain to source on resistance vs junction temperature figure 9. normalized gate threshold voltage vs junction temperature figure 10. normalized drain to source breakdown voltage vs junction temperature typical characteristic (continued) 0 25 50 75 100 12345 i d , drain current (a) v gs , gate to source voltage (v) pulse duration = 80 s duty cycle = 0.5% max v dd = 15v t j = -55 o c t j = 175 o c t j = 25 o c 0 25 50 75 100 0 0.5 1.0 1.5 2.0 i d , drain current (a) v ds , drain to source voltage (v) v gs = 3v v gs = 3.5v v gs = 10v pulse duration = 80 s duty cycle = 0.5% max t c = 25 o c v gs = 4.5v 5 10 15 20 25 246810 v gs , gate to source voltage (v) r ds(on) , drain to source on resistance (m ? ) i d =5a i d = 50a pulse duration = 80 s duty cycle = 0.5% max t c = 25 o c i d = 25a 0.5 1.0 1.5 2.0 -80 -40 0 40 80 120 160 200 normalized drain to source t j , junction temperature ( o c) on resistance v gs = 10v, i d = 50a pulse duration = 80 s duty cycle = 0.5% max 0.2 0.6 1.0 1.4 -80 -40 0 40 80 120 160 200 normalized gate t j , junction temperature ( o c) threshold voltage v gs = v ds , i d = 250 a 0.9 1.0 1.1 -80 -40 0 40 80 120 160 200 1.2 t j , junction temperature ( o c) normalized drain to source breakdown voltage i d = 250 a
?2002 fairchild semiconductor corporation ISL9N306AD3 / ISL9N306AD3st rev. b1 ISL9N306AD3 / ISL9N306AD3st figure 11. capacitance vs drain to source voltage figure 12. gate charge waveforms for constant gate currents figure 13. switching time vs gate resistance figure 14. switching time vs gate resistance typical characteristic (continued) 1000 0.1 1 10 5000 100 30 c, capacitance (pf) v ds , drain to source voltage (v) v gs = 0v, f = 1mhz c iss = c gs + c gd c oss ? c ds + c gd c rss = c gd 0 2 4 6 8 10 0 102030 405060 v gs , gate to source voltage (v) q g , gate charge (nc) v dd = 15v i d = 50a i d = 25a waveforms in descending order: i d = 5a 0 50 100 150 200 250 300 0 1020304050 switching time (ns) r gs , gate to source resistance ( ? ) v gs = 4.5v, v dd = 15v, i d = 16a t r t d(on) t f t d(off) 0 100 200 300 400 500 0 1020304050 switching time (ns) r gs , gate to source resistance ( ? ) t d(off) t r t d(on) t f v gs = 10v, v dd = 15v, i d = 16a test circuits and waveforms figure 15. unclamped energy test circuit figure 16. unclamped energy waveforms t p v gs 0.01 ? l i as + - v ds v dd r g dut vary t p to obtain required peak i as 0v v dd v ds bv dss t p i as t av 0
?2002 fairchild semiconductor corporation ISL9N306AD3 / ISL9N306AD3st rev. b1 ISL9N306AD3 / ISL9N306AD3st figure 17. gate charge test circuit figure 18. gate charge waveforms figure 19. switching time test circuit figure 20. switching time waveforms test circuits and waveforms (continued) r l v gs + - v ds v dd dut i g(ref) v dd q g(th) v gs = 1v q g(5) v gs = 5v q g(tot) v gs = 10v v ds v gs i g(ref) 0 0 q gs q gd v gs r l r gs dut + - v dd v ds v gs t on t d(on) t r 90% 10% v ds 90% 10% t f t d(off) t off 90% 50% 50% 10% pulse width v gs 0 0
?2002 fairchild semiconductor corporation ISL9N306AD3 / ISL9N306AD3st rev. b1 ISL9N306AD3 / ISL9N306AD3st thermal resistance vs. mounting pad area the maximum rated junction temperature, t jm , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, p dm , in an application. therefore the application ? s ambient temperature, t a ( o c), and thermal resistance r ja ( o c/w) must be reviewed to ensure that t jm is never exceeded. equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. in using surface mount devices such as the to-252 package, the environment in which it is applied will have a significant influence on the part ? s current and maximum power dissipation ratings. precise determination of p dm is complex and influenced by many factors: 1. mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. the number of copper layers and the thickness of the board. 3. the use of external heat sinks. 4. the use of thermal vias. 5. air flow and board orientation. 6. for non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. fairchild provides thermal information to assist the designer ? s preliminary application evaluation. figure 21 defines the r ja for the device as a function of the top copper (component side) area. this is for a horizontally positioned fr-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. this graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. pulse applications can be evaluated using the fairchild device spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. displayed on the curve are r ja values listed in the electrical specifications table. the points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, p dm . thermal resistances corresponding to other copper areas can be obtained from figure 21 or by calculation using equation 2. r ja is defined as the natural log of the area times a coefficient added to a constant. the area, in square inches is the top copper area including the gate and source pads. (eq. 1) p dm t jm t a ? () z ja ----------------------------- = (eq. 2) r ja 33.32 23.84 0.268 area + () ------------------------------------ - + = 25 50 75 100 125 0.01 0.1 1 10 figure 21. thermal resistance vs mounting pad area r ja = 33.32 + 23.84/(0.268+area) r ja ( o c/w) area, top copper area (in 2 )
?2002 fairchild semiconductor corporation ISL9N306AD3 / ISL9N306AD3st rev. b1 ISL9N306AD3 / ISL9N306AD3st pspice electrical model .subckt isl9n306a 2 1 3 ; rev may 2001 ca 12 8 2.0e-9 cb 15 14 2.3e-9 cin 6 8 3e-9 dbody 7 5 dbodymod dbreak 5 11 dbreakmod dplcap 10 5 dplcapmod ebreak 11 7 17 18 35.8 eds 14 8 5 8 1 egs 13 8 6 8 1 esg 6 10 6 8 1 evthres 6 21 19 8 1 evtemp 20 6 18 22 1 it 8 17 1 ldrain 2 5 1.0e-9 lgate 1 9 4.58e-9 lsource 3 7 1.47e-9 mmed 16 6 8 8 mmedmod mstro 16 6 8 8 mstromod mweak 16 21 8 8 mweakmod rbreak 17 18 rbreakmod 1 rdrain 50 16 rdrainmod 1e-3 rgate 9 20 2.69 rldrain 2 5 10 rlgate 1 9 45.8 rlsource 3 7 14.7 rslc1 5 51 rslcmod 1e-6 rslc2 5 50 1e3 rsource 8 7 rsourcemod 3.5e-3 rvthres 22 8 rvthresmod 1 rvtemp 18 19 rvtempmod 1 s1a 6 12 13 8 s1amod s1b 13 12 13 8 s1bmod s2a 6 15 14 13 s2amod s2b 13 15 14 13 s2bmod vbat 22 19 dc 1 eslc 51 50 value={(v(5,51)/abs(v(5,51)))*(pwr(v(5,51)/(1e-6*275),5))} .model dbodymod d (is = 3.6e-11 n=1.075 rs = 3.5e-3 trs1 = 1e-3 trs2 = 1e-6 xti=1.0 cjo = 1.45e-9 tt = 8e-11 m = 0.51) .model dbreakmod d (rs = 1.7e-1 trs1 = 1e-3 trs2 = -8.9e-6) .model dplcapmod d (cjo = 11.5e-10 is = 1e-30 n = 10 m = 0.46) .model mmedmod nmos (vto = 1.7 kp = 9 is=1e-30 n = 10 tox = 1 l = 1u w = 1u rg = 2.69) .model mstromod nmos (vto = 2.1 kp = 100 is = 1e-30 n= 10 tox = 1 l = 1u w = 1u) .model mweakmod nmos (vto = 1.36 kp = 0.05 is = 1e-30 n = 10 tox = 1 l = 1u w = 1u rg = 26.9 rs = 0.1) .model rbreakmod res (tc1 = 1e-3 tc2 = -7e-7) .model rdrainmod res (tc1 = 1.2e-2 tc2 = 3.0e-5) .model rslcmod res (tc1 = 1e-3 tc2 = 1e-6) .model rsourcemod res (tc1 = 1e-3 tc2 = 1e-6) .model rvthresmod res (tc1 = -2.6e-3 tc2 = -7.5e-6) .model rvtempmod res (tc1 = -1.8e-3 tc2 = 1e-6) .model s1amod vswitch (ron = 1e-5 roff = 0.1 von = -4.0 voff= -0.8) .model s1bmod vswitch (ron = 1e-5 roff = 0.1 von = -0.8 voff= -4.0) .model s2amod vswitch (ron = 1e-5 roff = 0.1 von = -0.3 voff= 0.2) .model s2bmod vswitch (ron = 1e-5 roff = 0.1 von = 0.2 voff= -0.3) .ends note: for further discussion of the pspice model, consult a new pspice sub-circuit for the power mosfet featuring global temperature options ; ieee power electronics specialist conference records, 1991, written by william j. hepp and c. frank wheatley. 18 22 + - 6 8 + - 5 51 + - 19 8 + - 17 18 6 8 + - 5 8 + - rbreak rvtemp vbat rvthres it 17 18 19 22 12 13 15 s1a s1b s2a s2b ca cb egs eds 14 8 13 8 14 13 mweak ebreak dbody rsource source 11 7 3 lsource rlsource cin rdrain evthres 16 21 8 mmed mstro drain 2 ldrain rldrain dbreak dplcap eslc rslc1 10 5 51 50 rslc2 1 gate rgate evtemp 9 esg lgate rlgate 20 + - + - + - 6
?2002 fairchild semiconductor corporation ISL9N306AD3 / ISL9N306AD3st rev. b1 ISL9N306AD3 / ISL9N306AD3st saber electrical model rev may 2001 template isl9n306a n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl = 3.6e-11, nl=1.075 , rs = 3.5e-3, trs1 = 1e-3, trs2 = 1e-6, xti=1.0, cjo = 1.45e-9, tt = 8e-11, m = 0.51,) dp..model dbreakmod = (rs =0.17, trs1 = 1e-3, trs2 = -8.9e-6) dp..model dplcapmod = (cjo = 11.5e-10, isl=10e-30, nl=10, m=0.46) m..model mmedmod = (type=_n, vto = 1.7, kp=9, is=1e-30, tox=1) m..model mstrongmod = (type=_n, vto = 2.1, kp = 100, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.36, kp = 0.05, is = 1e-30, tox = 1, rs=0.1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.0, voff = -0.8) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -0.8, voff = -4.0) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.3, voff = 0.2) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.3) c.ca n12 n8 = 2.0e-9 c.cb n15 n14 = 2.3e-9 c.cin n6 n8 = 3e-9 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 4.58e-9 l.lsource n3 n7 = 1.47e-9 m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1 = 1e-3, tc2 = -7e-7 res.rdrain n50 n16 = 1e-3, tc1 = 1.2e-2, tc2 = 3.0e-5 res.rgate n9 n20 = 2.69 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 45.8 res.rlsource n3 n7 = 14.7 res.rslc1 n5 n51= 1e-6, tc1 = 1e-3, tc2 =1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 3.5e-3, tc1 = 1e-3, tc2 =1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.8e-3, tc2 = 1e-6 res.rvthres n22 n8 = 1, tc1 = -2.6e-3, tc2 = -7.5e-6 spe.ebreak n11 n7 n17 n18 = 35.8 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e-6/275))** 5)) } } 18 22 + - 6 8 + - 19 8 + - 17 18 6 8 + - 5 8 + - rbreak rvtemp vbat rvthres it 17 18 19 22 12 13 15 s1a s1b s2a s2b ca cb egs eds 14 8 13 8 14 13 mweak ebreak dbody rsource source 11 7 3 lsource rlsource cin rdrain evthres 16 21 8 mmed mstro drain 2 ldrain rldrain dbreak dplcap iscl rslc1 10 5 51 50 rslc2 1 gate rgate evtemp 9 esg lgate rlgate 20 + - + - + - 6
?2002 fairchild semiconductor corporation ISL9N306AD3 / ISL9N306AD3st rev. b1 ISL9N306AD3 / ISL9N306AD3st spice thermal model rev may 2001 isl9n306at ctherm1 th 6 2.7e-4 ctherm2 6 5 3.9e-3 ctherm3 5 4 4.2e-3 ctherm4 4 3 4.8e-3 ctherm5 3 2 1.9e-2 ctherm6 2 tl 5.9e-2 rtherm1 th 6 1.0e-3 rtherm2 6 5 4.8e-3 rtherm3 5 4 4.5e-2 rtherm4 4 3 2.6e-1 rtherm5 3 2 3.1e-1 rtherm6 2 tl 3.4e-1 saber thermal model saber thermal model isl9n306at template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 2.7e-4 ctherm.ctherm2 6 5 = 3.9e-3 ctherm.ctherm3 5 4 = 4.2e-3 ctherm.ctherm4 4 3 = 4.8e-3 ctherm.ctherm5 3 2 = 1.9e-2 ctherm.ctherm6 2 tl = 5.9e-2 rtherm.rtherm1 th 6 = 1.0e-3 rtherm.rtherm2 6 5 = 4.8e-3 rtherm.rtherm3 5 4 = 4.5e-2 rtherm.rtherm4 4 3 = 2.6e-1 rtherm.rtherm5 3 2 = 3.1e-1 rtherm.rtherm6 2 tl = 3.4e-1 } rtherm4 rtherm6 rtherm5 rtherm3 rtherm2 rtherm1 ctherm4 ctherm6 ctherm5 ctherm3 ctherm2 ctherm1 tl 2 3 4 5 6 th junction case
rev. i1 trademarks the following are registered and unregistered trademarks fairchild semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. disclaimer fairchild semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. fairchild does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. life support policy fairchild ? s products are not authorized for use as critical components in life support devices or systems without the express written approval of fairchild semiconductor corporation. as used herein: 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. product status definitions definition of terms acex ? activearray ? bottomless ? coolfet ? crossvolt ? dome ? ecospark ? e 2 cmos ? ensigna ? fact ? fact quiet series ? fast ? fastr ? frfet ? globaloptoisolator ? gto ? hisec ? i 2 c ? implieddisconnect ? isoplanar ? littlefet ? microfet ? micropak ? microwire ? msx ? msxpro ? ocx ? ocxpro ? optologic ? optoplanar ? pacman ? pop ? power247 ? powertrench ? qfet ? qs ? qt optoelectronics ? quiet series ? rapidconfigure ? rapidconnect ? silent switcher ? smart start ? spm ? stealth ? supersot ? -3 supersot ? -6 supersot ? -8 syncfet ? tinylogic ? trutranslation ? uhc ? ultrafet ? vcx ? across the board. around the world. ? the power franchise ? programmable active droop ? datasheet identification product status definition advance information formative or in design this datasheet contains the design specifications for product development. specifications may change in any manner without notice. preliminary first production this datasheet contains preliminary data, and supplementary data will be published at a later date. fairchild semiconductor reserves the right to make changes at any time without notice in order to improve design. no identification needed full production this datasheet contains final specifications. fairchild semiconductor reserves the right to make changes at any time without notice in order to improve design. obsolete not in production this datasheet contains specifications on a product that has been discontinued by fairchild semiconductor. the datasheet is printed for reference information only.


▲Up To Search▲   

 
Price & Availability of ISL9N306AD3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X